Transverse Myelitis

Douglas Kerr, MD/PhD
Director, JHTMC
Assistant Professor of Neurology
The Johns Hopkins Hospital
Diagnostic Criteria of TM

- Acute or subacute motor, sensory or autonomic dysfunction
- Segmental distribution of sensory impairment
- No sc compression
- Exclusion of other causes
- < 4 wks from onset to peak
 - Berman et al., 1981
Differential Diagnosis of TM

- Trauma
- MS
- Spondylosis
- Tumors
- Paraneoplastic
- B12
- Intoxication
- Hemorrhage

- Ischemia
- AVM/AVF
- Vasculitis
TM Demographics

- Incidence: 4.6 per million, per year
- 1400 new cases in U.S. per year
- Prevalence: 34,000 people in the U.S. at any given time with morbidity from TM
Viral Etiologies

- **Picornaviruses**
 - Coxackie
 - Echo
 - Hep A
- **Togaviruses**
 - Arboviruses
 - Tick-borne
 - Rubella
- **Retroviruses**
 - HIV-1
 - HTLV-1
- **Orthomyxoviruses**
 - Measles
 - Mumps
- **Bunyaviruses**
 - California encephalitis
Viral Etiologies (cont.)

- Arenaviruses
 - LCMV
- Rhabdoviruses
 - Rabies
- Hepatitis B, C

- Herpes viruses
 - HSV-1
 - HSV-2
 - VZV
 - CMV
 - HHV-6
Clinical Classification of TM

- 45% parainfectious
- 21% MS
- 12% ischemic/vascular
- 21% idiopathic

- Retrospective analyses of 33 cases
 – Jeffery et al., 1993
Recurrence of TM

- MS 60%
- Idiopathic 15%
- Postinfectious 12%
- Ischemia 5%
 - Jeffery et al., 1993
Presenting Symptom in TM

- Pain 12/25
- Weakness 9/25
- Urinary dysfxn 3/25
- Sensory 1/25
- 25 children
 - Paine and Byers, 1953

- Pain 33/82
- Weakness 25/82
- Urinary dysfxn 33/82
- Sensory 64/82
 - Ropper and Poskanzer, 1978
 - Christensen et al., 1990
Antecedent Illness in TM

- 11/31 Misra et al., 1988
- 25/31 Al Deeb, 1997 (Saudi Arabia)
- 19/52 Ropper and Poskanzer, 1978
- 12/34 Lipton and Teasdall, 1973 (JHH)
- 20/67 Altrocchi, 1963
Progression of Symptoms of TM

- Onset to maximum
 - poor: mean 4.6 d
 - (0.3-17)
 - fair-good: 7.3 d
 - (0.8-19)
 - Christensen et al., 1990

- <24 hrs- 45%
- 1-3 d- 10%
- 4-7 d- 9%
- >7 d- 36%

- Altrocchi, 1963, N=67
Association of TM with trauma

- Many people believe that mild-moderate trauma is associated with the development of TM
- 10% of cases in some series (Altrocchi, 1963).
- Often mild trauma/sprain
Pathology of TM

- Widely variable from demyelination to necrosis
- infarction-2/8
- non-specific necrosis-2/8
- meningomyelitis-1/8
- intramedullary capillary telangiectasias with hemorrhage-1/8
 - Lipton and Teasdall, 1973
Prognostic Variables in TM

- **Good**
 - retained reflexes
 - retained post. Column

- **Poor**
 - back pain
 - spinal shock
 - abnormal SEP
 - denervation on EMG
 - Kalita et al., 1998

- **Non-predictive**
 - age
 - sex
 - race
 - ant. Illness
 - rapidity of progression
 - level
 - CSF findings

Kalita et al., 1998
Outcome from TM

- Good- 1/3
- fair- 1/3
- poor/death- 1/3
 - Berman et al., 1981 (N=48)
 - Christensen et al., 1990 (N=30)
 - Ropper and Poskanzer, 1978 (N=48)
Mortality of TM

- 5/34- Lipton and Teasdall, 1973 (JHH)
- 3/62- Berman et al., 1981
- 2/30- Christensen et al., 1990
- 1/31- Al Deeb et al., 1997

- total around 5%
TM and MS

- Rarely see spinal shock, back pain or large segmental involvement
- See spasticity early
- With partial TM: 42% (Miller et al., 1989) or 80% (Ford et al., 1992) will develop MS
TM and MS (cont)

- OCB in 60%
- + CNS PVWML = PPV of 93%
- MR of C/T spine: lesions peripherally located, < 2 vertebral levels and occupy < 1/2 the cord diameter
TM and Vascular Malformations

- Dural AVF
- onset >40, <70
- males:females 4:1
- symptoms: PAIN, progressive weakness, saddle numbness, claudication, urinary sx.
- Postural relationship
- fluctuating or slowly progressive course
TM and AVF (cont.)

- PE: Spinal bruit or cutaneous angioma occasionally
- More prominent with Valsalva
- MRI: Enlarged cord, subtle gad of dorsal surface
- Myelography is procedure of choice
TM and AVF (cont.)

- Etiology: Increased venous pressure and vascular congestion
- Natural hx: 91% non-ambulatory by 3 yrs.
- Rx: Limited laminectomy nidus removal or vein ligation
- Gait improvement in 5 of 7 previously wheelchair-bound patients
TM and ID

- Oligoarticular arthritis - ?
- ECM-Lyme
- Palatal petechiae - ?
- Copper colored rash with amp - ?
- Lymphadenopathy/hepatosplenomegaly - ?
- Pharyngitis/myringitis - ?
- Hepatic renal dysfunction - ?
TM Treatment

- **Steroids (? SCI protocol)**
 - < 3 hrs: Solumedrol 30 mg/kg bolus then 5.4 mg/kg per hr x 23 hrs
 - 3-8 hrs: Same bolus with 48 hr infusion
TM Treatment (cont.)

- Solumedrol 1 gm qd x 3 d
- Open label, children
- Median time to independent ambulation 23 d vs. 97 d
- Proportion with full recovery: 80% vs. 10%
 - Sebire et al., 1997
 - Lahat et al., 1998
TM and SLE

- CNS lupus in 24-51% of SLE pts
- TM in 1-4% of SLE pts
- 20% of CNS lupus get TM
 - Neuwelt et al., 1995
• CSF abnormal in 63%
• MRI abnormal in 56%
• 10% lupus nephritis
• 40% ds DNA Ab
• No increase in ACL or LAC
 – Mok et al., 1997 (China)
Improved outcome with IV-CYC
Retrospective review
IV-CYC: 500 mg/m2 per month up to 1000 mg/m2
Dose-adjustment: WBC nadir of 3-4K
– Neuwelt et al., 1995
Management of TM

- Avoid autonomic dysreflexia
- An emergency!
- Seen with lesions above T6
- Sx: Severe HA, spots in front of eyes, blurred vision, slow HR, goosebumps, sweating, flushing above lesion
- BP up to 280/140
Mechanism of Autonomic Dysreflexia

- Impaired descending fiber input to T6-T10 for alpha adrenergic vasodilation
- Hence vasoconstriction, HTN and vagal tone
Causes of Autonomic Dysreflexia

- pain signals
- full bladder
- infection
- stool impaction
- tests
- pressure sores
- hot and cold temp
- sunburn

- tight clothes
- menstrual cramps
- labor
- stomach ulcer
- some drugs
Treatment of Autonomic Dysreflexia

- Sit up!
- Find and remove the cause
 - Catheterization
 - Remove tight clothing
 - Bowel disimpaction
- Nitroglycerine ointment
- Nifedipine 10 mg sl
Bladder Dysfunction in TM

- Usually areflexic, atonic at first
- Resolves to hyperreflexic bladder with/without dyssynergia
- W/U: UA, C and S, BUN/Cr, IVP/retrograde cystometrogram
- Urodynamics a must, but not acutely
Management of Bladder Dysfunction

- IC: For volumes which don’t result in increased intravesicular pressure
- Indwelling catheter
- Suprapubic catheterization
- Crede Valsalva
Management of Bladder Dysfunction (cont.)

- **Hyperreflexic bladder:**
 - Anticholinergic
 - Oxybutinin 5mg tid/qid
 - Propantheline 15-30mg tid/qid
 - Imipramine 25mg tid

- **DESD**
 - Neuromuscular inhibition
 - IC and anticholinergics
 - Sphincterotomy
DESD in TM

- Dis-coordination between bladder and external sphincter
- Results in bladder wall changes, loss of compliance and high pressure voiding
Potential future therapies

Novantrone (mitoxantrone)
- novel medicine utilized for MS: decreases number of attacks and delay in disability progression in SPMS
- Reduced deterioration in EDSS from 44% (placebo) to 17% (12 mg/m2 dose)
- SE: nausea, alopecia, transient neutropenia,
Potential future therapies

- 4-Aminopyridine (fampridine)
 - potassium channel blocker, which diminishes the “leak” of ions in demyelinated areas
 - increases conduction of demyelinated neurons
 - iv or po
 - dose related seizures and chemical hepatitis
 - narrow therapeutic window
 - 27% vs 2% subjective improvement in MS patients (blinded)
Potential future therapies

- **M1 monoclonal antibodies**
 - accelerate remyelination in three animal models: viral, autoimmune and chemically induced

- **IN-1 monoclonal antibodies**
 - stimulates neurite outgrowth and overcomes the inhibition of CNS myelin

- **Neurotrophins**
 - NT-3, BDNF, GDNF
Potential Future Therapies

- Polyketides
 - Rapamycin/FK506 analogs
 - immunosuppressant and stimulant of neurite outgrowth (separable activities)
- Neuroimmunophilin ligands
Johns Hopkins Transverse Myelopathy Center (JHTMC)

- A unique multi-disciplinary center dedicated to the diagnosis and treatment of patients with transverse myelitis
JHTMC-MISSION
STATEMENT

• Patient Care
 – Ensure the appropriate diagnosis and work-up of TM patients
 – Maximize function with existing technology
 – Minimize chance of ongoing damage
 – Develop new therapies
• Research (New Discoveries)
• Teaching
JHTMC-Patient Care Highlights

- Multi-disciplinary approach
- Hopkins experts
- Best technology
- Newest treatments
- Support- access to care/help with insurance/patient groups
- Education- PCP/community/home
- Long term care
• Large cohort of patients: epidemiology/outcomes
• Develop/evaluate new technology
 – novel imaging strategies
 – prognostic variables
• Develop/evaluate new therapies
 – immune mediators/cytokine treatment
 – animal models for TM
 – neuronal stem cell therapies
Encourage pharmaceutical involvement in therapeutic trials
JHTMC-Education

- Patient
- Family/friends/caregivers
- Students
- Physicians/PCP
- Unique programs
- Access to materials

45The Johns Hopkins Hospital
JHTMC-Unique Clinical Features

• Diagnostic studies
 – novel neuro-imaging strategies
 – novel CSF disease markers
 – infectious/inflammatory work up
 – MS evaluation
 – Electro-diagnostic studies
JHTMC-Unique Clinical Features (cont)

- Spasticity/Gait evaluation and treatment
 - Quantitative upper and lower limb spasticity evaluation
 - Functional gait/stability assessment
 - Intrathecal therapies for spasticity
 - Expert splinting/mobilization strategies
JHTMC- Unique Clinical Features (cont)

- Pain management
- Functioning in society
- Psychiatry evaluation tailored specifically to patients with TM
- Sexual function determination
JHTMC-Unique Clinical Features (cont)

- Expert evaluation of bladder dysfunction
- Urodynamics testing performed
- Determination of optimal therapy to maximize continence and minimize damage to the urinary tract
- Avoidance of UTIs