Interventional Approaches to Neuropathic Pain
Paul J. Christo, MD, MBA
Assistant Professor
Director, Pain Treatment Center
and Pain Fellowship Program
Johns Hopkins Medicine

Adapted from a presentation given at the 2006 Rare Neuroimmunologic Symposium

I am a pain medicine specialist, anesthesiologist, and the director of the pain treatment center and pain fellowship program at Johns Hopkins. My article focuses on interventions that we typically use to treat neuropathic pain. As an introduction, I will distinguish acute versus chronic pain and nociceptive versus neuropathic pain and will describe the mechanisms behind the various types of pain. I will then highlight the interventional strategies or injections that we use to help relieve neuropathic pain.

Pain warns of threatened or ongoing tissue damage. The International Association for the Study of Pain defines pain as, “an unpleasant sensory and emotional experience associated with potential or actual tissue damage.” In general, tissue that is injured from surgery, trauma, or even disease processes release inflammatory products such as prostaglandins or histamine. These products trigger pain signals that travel from the body to the spinal cord and then to the brain where the messages are interpreted as painful.

Pain can be classified as both acute and chronic. Subsumed under chronic pain are nociceptive pain, neuropathic pain, visceral pain, and then a mixture of all three types of pain. For instance, some patients who suffer from low back pain experience both nociceptive and neuropathic pain; however, it can be difficult to distinguish the mechanisms that are responsible for particular types of pain.

Acute pain (next page) can be viewed as an unpleasant reaction or sensation due to some type of tissue damage that may be related to surgery or even an injury, such as spraining an ankle. Acute pain is physiologically normal and serves a protective role. The degree of pain a patient experiences typically corresponds to the extent of tissue damage. Acute pain treatment outcomes are good; that is, most acute pain can be successfully treated with medications and patients usually do not suffer from persistent pain. For example, we often use oral or intravenous opioids and/or epidural anesthesia intra-operatively and post-operatively with good pain control and minimal side effects.

Chronic pain poses more of a challenge in understanding the disease and treating the symptoms. The International Association for the Study of Pain classifies or describes chronic pain as, “pain that persists after the

Pain Classification

Most enemas get up about halfway and then fall down. An irrigation schedule can be every one, two or every third day and evacuation occurs within about 15-30 minutes. One can use tap water, saline or phospha-soda. It requires no additional assistance. Folks can sit on the commode and be clean and worry free after 30 minutes and until the next time.

In conclusion, the effects of TM on pelvic function are highly variable. It is possible to diagnose voiding dysfunction and plan appropriate therapy. Our goals in therapy are to preserve the safety of the kidneys and this is ordinarily not hard to do. Continence, independence and maximizing quality of life are the other goals of therapy. Our progress has been incremental, but it is real. We need to be our own best advocates, and that requires that you become educated about your condition and about possible therapy options. One of the goals of the TM Center at Johns Hopkins is to be that place of information transfer. The road is long. I believe that in our lifetime, many of these conditions will be better understood, and we will have medicines and therapies to better restore function.

![Chait/ACE set-up](image-url)
expected healing time of injury.” Patients who suffer from chronic pain often describe symptoms that are out of proportion to anything that physicians would detect on physical exam. We believe that chronic pain serves no clinical benefit. Instead, it often leads to psychosocial struggles such as depression, anxiety, fear, and other co-morbidities. Pain experts generally agree that chronic pain begins anywhere from 3-6 months of persistent pain and results from a variety of mechanistic changes to the nervous system (1, 2). Treating chronic pain requires multimodal therapy: injections, medications, physical therapy, and psychological interventions in order to achieve the best outcome. In our pain clinic, we treat non-malignant (non-cancer), chronic pain patients, as well as patients suffering from cancer-related pain. We focus on providing an array of therapies that will maximize pain relief, increase mobility, allow patients to re-engage socially, and enjoy an enhanced quality of life.

Nociceptive pain may result from mechanical, thermal or chemical excitation of nociceptors (pain receptors). Nociceptive pain is often considered acute, though several chronic pain states, such as arthritis and sickle cell crises may be nociceptive in nature. Nociceptors are located throughout the body. They are widely distributed in the skin, subcutaneous tissue, bone, muscle, connective tissue, viscer (organs), and blood vessels. When patients experience nociceptive pain, they often describe it as aching, throbbing or sometimes sharp. This pain is typically responsive to opioids, such as morphine, fentanyl, or hydromorphone (dilaudid).

Neuropathic pain differs from nociceptive pain. The International Association for the Study of Pain defines neuropathic pain as, “pain that is initiated or caused by a primary lesion or dysfunction in the peripheral or central nervous system or both.” Neuropathic pain continues without ongoing tissue damage and despite tissue healing. There are several clinical characteristics that are associated with neuropathic pain.

For example, patients describe this type of pain as burning or electric-like in sensation (3). There tends to be a delay in onset after injury. Patients also describe neuropathic pain as shooting, stabbing, or shock-like, or even a continuous aching sensation. Upon examination, physicians frequently detect a phenomenon called allodynia, or pain from a stimulus (like a cotton swab) that does not normally evoke pain. Furthermore, clinicians may also uncover another feature of neuropathic pain called hyperalgesia, or an exaggerated, quite painful response to a stimulus (like a needle prick) that normally provokes pain (4).

Origins of Neuropathic Pain

Peripheral nerve trauma
- Entrapment neuropathies
- Nerve transection
- Amputation or stump pain
- Neurona

Other Mononeuropathies
- Diabetic neuropathy
- Malignant nerve/plexus invasion
- Connective tissue disease

Central sensory deficits
- Infectious
- Chemical
- Ischemic insults
- Disease (Multiple Sclerosis, Cerebral Palsy)

Polyneuropathies
- Diabetic
- Alcoholic
- Nutritional
- Infectious (HIV)
- Chemical (Chemotherapy)
- Idiopathic/Genetic

Root/dorsal root ganglion
- Post herpetic neuralgia
- Trigeminal neuralgia
- Prolapsed disc/compression
- Arachnoiditis
- Tumor compression
- Root avulsion
- Surgical (Rhizotomy)

There are multiple origins of neuropathic pain that range from peripheral nerve trauma, such as amputation or
neuropathic pain is 50% or greater in patients with AIDS, cancer, and diabetes, whereas it is only 28% in patients with multiple sclerosis.

Clinical Manifestations of Neuropathic Pain

Alloodynia: pain due to stimulus that does not normally produce pain

Analgesia: absence of pain in response to stimulation that would normally be painful

Hyperalgesia: an increase in response to stimulus that is normally painful

Hyperesthesia: increase sensitivity to stimulation

Hyperpathia: abnormally painful reaction to a stimulus as well as an increase threshold

Hypoalgesia: diminished pain in response to a normally painful stimulus

Hypoesthesia: decreased sensitivity to stimulation

Paresthesia: an abnormal sensation, whether spontaneous or evoked

Dysesthesia: an unpleasant, abnormal sensation whether spontaneous or evoked

This chart identifies and defines the various clinical manifestations of neuropathic pain. Neuropathic pain is difficult, but rarely impossible to treat. Researchers struggle to link symptoms that patients exhibit to specific mechanisms in the nervous system that may explain the symptoms. A single mechanism may be responsible for multiple symptoms in one patient, or the same symptom (burning, for instance) seen in different patients may be due to different mechanisms. In fact, multiple mechanisms may exist simultaneously in a single patient and may change over time (6). As we unravel these mechanistic intricacies, targeted medical or perhaps procedural therapies may be developed to treat elements of the dysfunctional nervous system.

Neuropathic pain is associated with distinct cellular and molecular mechanisms that incorporate ion channels, cytokines, and neuropeptides. Pain results from abnormal communication between the peripheral and central nervous system. Specifically, pain may derive from aberrant relationships between large and small fibers, and sympathetic fibers in the nervous system.

Mechanisms of Neuropathic Pain

Brain
- Altered “gating”
- Molecular Changes
- Gene expression changes
- Receptive field changes

Spinal cord
- Altered “gating”
- Dorsal horn denervation
- Hypersensitivity
- Gene expression changes
- Receptive field changes

Peripheral Nerve Fibers
- Ectopic discharges
- Mechano-sensitivity
- Ephaptic cross talk

Sympathetic Fibers
- Cross talk
- Sprouting
The mechanisms range from sympathetic nervous system dysfunction to dysfunction of peripheral nerve fibers. Altered function can occur at the level of the spinal cord (dorsal horn), the dorsal root ganglia, or in the brain, specifically the thalamus and somatosensory cortex where higher level pain processing occurs.

Neuroinflammation: “Sensitizing Soup”

- Hydrogen ions
- Histamine
- Noradrenaline
- Bradykinin
- Prostaglandins
- Leukotrienes
- K ions
- 5-HT
- Cytokines (interleukins, TNF)
- Purines
- Nerve growth factor
- Neuropeptides

This group of neurochemicals that is released by tissue trauma, diseases, or other factors may be viewed as forming a pain “sensitizing soup” that leads to neuroinflammation. This chart identifies an array of stimuli that we believe are part of this soup that sensitizes pain receptors, bombards the nervous system, and leads to chronic or neuropathic pain states.

This picture (bottom left) represents the “sensitizing soup” just described. The left side of the image represents tissue injury from surgery, trauma, or some destructive process, for example. There is a subsequent release of stimuli: histamines, prostaglandins, ATP, and hydrogen ions. These stimuli sensitize the nociceptor (pain receptor) and trigger the transmission of impulses from the nerve to the spinal cord, and then to the brain where the signals are interpreted as painful.

This graphic (bottom right) helps to explain the transition from acute to chronic pain. The left side represents acute pain and the right depicts chronic pain. The structure represented at the top of the graphic is a nociceptor (A-delta or C-fiber) and the area at the lower portion of the graphic represents a specific part of the spinal cord called the dorsal horn. In acute pain, glutamate is released and binds to an AMPA receptor. In chronic pain states, including neuropathic pain, glutamate is released in large quantity and bombards the NMDA receptor that is located in the dorsal horn of the spinal cord. A series of chemical events occurs which eventually leads to new gene expression. The expression of the c-fos gene sensitizes the dorsal horn cell, and leads to a phenomenon called central sensitization. We believe that the development of central sensitization reflects a chronic pain state and may help explain the symptoms of neuropathic pain.

Interventional strategies for treating neuropathic pain often involve injections of local anesthetic and sometimes steroid. While many patients experience anxiety about injections, they are often surprised at the level of comfort that they receive from these treatments.

This graphic (next page) depicts the targets for some of these injections. The targets include peripheral nerves, such as the sciatic nerve for leg pain, or the medial branch nerve in the spine to help reduce low back pain. Nerves in the spine are targeted by epidural steroid injections that are useful for pain associated with disc herniations or spinal nerve compression by arthritic bone. The dorsal horn of the spinal cord might be targeted with intrathecal agents (intrathecal pump), such as morphine or bupivacaine, or with spinal cord stimulation that may help modulate back and leg pain re-
sulting from previous spine surgery, or neuropathic pain stemming from persistent shingles pain or complex regional pain syndrome (RSD).

Neuropathic Pain Syndromes

- Post-herpetic Neuralgia (PHN)
- Complex Regional Pain Syndrome (CRPS)
- Peripheral (Small Fiber) Neuropathies: Diabetic
- Ischemic Limb Pain
- Angina Pectoris
- Cancer Related (Chemo/RTX)
- Trigeminal Neuralgia
- Phantom Limb Pain
- Post Stoke Pain
- HIV Neuropathy
- Spinal Cord Injury
- Neuroradiculopathy

There are multiple neuropathic pain syndromes. I will focus on two of these syndromes for which we have some evidence of efficacy for interventions: post-herpetic neuralgia and complex regional pain syndrome.

Postherpetic neuralgia (PHN) is persistent, chronic shingles pain and it is caused by the herpes zoster virus. Typically, patients experience a rash followed by vesicle formation, then scab development, and finally continued pain. Patients often describe pain that is burning or electric-like. The pain courses along a certain dermatomal distribution and typically lasts greater than one month after the rash heals. Often the chest and face are affected. It is more common in women, and unfortunately, there is an increased risk of developing postherpetic neuralgia as we age. The risk of having continued pain at 12 months is almost five times higher in patients who are 80 years of age compared to those less than 80 year of age. In fact, almost 50% of patients greater than 70 years of age describe pain lasting greater than one year after the onset of the PHN rash (7).

What is the evidence for the efficacy of injection therapy in the treatment of PHN? There are four blocks that we typically use: intrathecal steroid injections, epidural steroid injections, sympathetic blocks, and spinal cord stimulation.

Intrathecal steroids were studied by Kotani et al in 2000. He studied 277 patients that had intractable post herpetic neuralgia for three years. The study was of good quality and consisted of a randomized, double blind, controlled trial. The groups in the trial included those who were injected with lidocaine (3cc of 3% lidocaine) intrathecally, those who received lidocaine plus steroid (3cc of 3% lidocaine with methylprednisolone), and those that received no injection (control group). Ninety percent of the patients in the lidocaine plus steroid (injected into the cerebrospinal fluid) group reported relief. They reported good to excellent relief and a decrease in their use of anti-inflammatory (NSAID) drugs. These patients described the same degree of relief even two years later and with no side effects. Despite the favorable outcome of this treatment, many pain physicians do not use intrathecal therapy (intrathecal local anesthetic and steroid) to help treat this condition, because of reports of chemical meningitis, chronic arachnoiditis, and transverse myelitis that may result from repetitive injections of steroid (methylprednisolone) intrathecally.

Kikuchi et al (1999) studied the efficacy of epidural steroids compared to intrathecal steroids in patients who had post herpetic neuralgia for greater than one year. The study involved just 25 patients. It was a randomized, controlled, single-blind study for four, weekly epidural or intrathecal injections. He evaluated continuous pain, lancinating (shooting) pain, and allodynia before treatment, at the end of treatment, a week later, and 24 weeks later. He found that there was significant pain relief in the patients who received the intrathecal steroids, similar to Kotani’s study. There was minimal relief in those who received epidural steroids, however.
The evidence more strongly demonstrates that patients with acute herpes zoster (shingles) typically do benefit from either intrathecal or epidural steroids that help reduce pain in that acute phase. The steroids may reduce neuronal inflammation that is associated with the acute phase of herpes zoster and may exert a membrane stabilizing effect on painful nerve transmission.

These are images showing an epidural steroid injection. The patient lies on his/her belly. The procedure can be done with fluoroscopy (x-ray) or just at the bedside. The image on the left is the spinal cord with exiting nerves. Under fluoroscopy, the patient lies face down and a small needle is inserted into the epidural space usually around lumbar level 4-5 or 5-1. Local anesthetic is used to numb the area of needle insertion. Contrast is injected to outline the epidural space, and then a small amount of local anesthetic along with steroid is injected into the epidural space. Complications are rare if performed by an experienced pain physician.

If patients suffer from post-herpetic neuralgia at the thoracic (chest) level, we may offer intercostal blocks (nerve blocks under the ribs) or thoracic epidural steroid injections. Patients with postherpetic neuralgia in the face may benefit from a stellate ganglion block which blocks certain nerves that supply the face, scalp, ear, and neck.

Is there evidence that sympathetic blockade with local anesthetics is helpful in patients who have post-herpetic neuralgia or acute herpes zoster (shingles)? Wu et al (2000) and Opstelten et al (2004) conducted reviews of the literature and found that sympathetic blocks are widely used for the prevention and treatment of postherpetic neuralgia and for the treatment of acute herpes zoster. However, the studies relating to these treatments were of low quality (lack or randomized, controlled trials). Case reports suggest that sympathetic nerve blocks may provide considerable relief in acute herpes zoster, but may only offer short-lived relief in PHN. However, sympathetic blocks may be a worthwhile strategy to pursue, if pain is inadequately controlled by medications. Since the severity of pain during an acute herpes zoster attack is a risk factor for progression to PHN, sympathetic blockade may lower the incidence of PHN by reducing pain severity.

The graphic demonstrates how this injection is performed. The stellate ganglion is one of several structures that compose the sympathetic nervous system. This local anesthetic block interrupts sympathetic outflow to the face, head, upper arm, ear, and neck. By blocking sympathetic nervous system transmission, pain signals that travel with these nerves can also be blocked. Patients who suffer from neuropathic pain in the previously men-
Sympathetic Block: Lumbar Sympathetic Block

The image on the left shows injection of contrast to verify proper needle location before local anesthetics are then injected.

Skin temperature is measured while performing these sympathetic blocks. We expect an increase in temperature as a result of interrupting sympathetic outflow to the skin. In other words, blood vessels dilate and release heat when parts of the sympathetic nervous system are blocked with local anesthetics. In order to confirm that the block is performed properly, we measure skin temperature. The image on the right demonstrates that one foot is warmer than the other after performing a sympathetic block.

The x-ray image on the right demonstrates a needle positioned on the transverse processes of C6, contrast (dark material) spread moving down toward the upper chest, and then subsequent injection of local anesthetic solution to block the stellate ganglion.

The next graphic shows an x-ray image of a lumbar sympathetic block. This injection is performed for patients who have neuropathic pain in the lower extremity. It is typically performed under x-ray guidance at the level of the low back. The needles in the image on the left are placed at L2 and L3. Patients are positioned face down during the procedure after which we insert a thin and long needle (7 inches) to contact the anterior-lateral aspect of the vertebral body. The image on the left shows injection of contrast to verify proper needle location before local anesthetics are then injected.

Sympathetic Block: Ganglion Impar Block

The ganglion impar represents the terminal end of the sympathetic chain (sympathetic nervous system). It is located near the sacral and coccygeal region of the spine as noted in this image. This structure can be blocked for patients suffering from neuropathic pain in the rectal, anal, perineal, and parts of the vaginal and urethral areas. A 3½ inch, 22 or 25 gauge needle is inserted through the anococcygeal ligament or the sacrococcygeal junction and contrast spread in the retrocecal space. The x-ray image on the right depicts a needle positioned through the sacrococcygeal junction and contrast spread in the retrocecal space. We want to avoid needle insertion into the colon or rectum. About 6-7 cc of local anesthetic and steroid are then injected to block the ganglion impar.

Neuromodulation (electrical stimulators and drug pumps) can be useful for alleviating neuropathic pain. A spinal cord stimulator delivers small doses of electricity to a certain area of the spinal cord in an attempt to block the transmission of painful sensations. Drug pumps serve a similar purpose, though specific medications are used instead of electricity.

The image on the next page shows a drug pump (intrathecal pump). Such a pump may contain morphine, hydromorphone, or bupivacaine. It is implanted underneath the skin and a tube is tunneled to the fluid-containing space surrounding the spinal cord,
may offer an alternative approach to pain control in patients who have unrelenting and intolerable pain from PHN.

Reflex Sympathetic Dystrophy (RSD) is a type of neuropathic pain. The condition has been re-named Complex Regional Pain Syndrome (CRPS). It predominates in women (60-81%) and often appears in early adulthood (36-42 years). The syndrome is typically caused by some type of injury such as a fracture, strain or a sprain. Some patients present with this syndrome following surgery or even spontaneously. The pain is reported as intense, withaching, burning, or shooting qualities. CRPS often occurs in the extremities: legs or arms. Clinical manifestations include allodynia and hyperalgesia, swelling, color and temperature changes, sweating changes, decreased range of motion, weakness, tremor, and nail and hair changes (8).

There are three interventional strategies used to treat CRPS: sympathetic blocks, spinal cord stimulation, and drug (intrathecal) pumps. Sympathetic blocks are frequently used to help treat this disease process. The quality of literature on lumbar sympathetic and stellate ganglion blocks in CRPS is limited, however. Yet, sympathetic blocks such as stellate ganglion blocks for arm pain and lumbar sympathetic blocks for leg pain can offer meaningful relief and can facilitate compliance with physical and occupational therapy. Many patients with CRPS may otherwise never move their leg or arm due to severe pain. Therefore, the reduction in pain associated with sympathetic blocks often permits individuals to participate in physical therapy and reduce their level of disability.

Spinal cord stimulation may also be considered for the treatment of CRPS. I have had a reasonable degree of success in using spinal cord stimulation for treating pain in patients who suffer from uncontrolled CRPS. It is typically considered in patients who are failing all other treatments such as nerve blocks, physiotherapy, or medications.

Overall, the literature provides moderate evidence that spinal cord stimulation effectively reduces pain in CRPS patients and promotes some benefit in function. For instance, Kemler et al (2000) in a high quality study examined the use of spinal cord stimulation in patients who had CRPS (9). Some patients received spinal cord stimulation plus physical therapy and the other group just engaged in physical therapy. He found that at the 6 month and one year follow up, pain was significantly reduced in the spinal cord stimulator group; however, he later found that patients in the spinal cord stimulator group reported less pain relief at both the 3 year and 5 year follow up.

In a more recent study, Harke et al (2005) found significant improvement...
in quality of life and functional status at a 3 year follow up among CRPS patients who were using spinal cord stimulation as a treatment modality (10). Specifically, patients reported decreased pain and disability, improved functional status, and a reduction in medication use.

The effects of spinal cord stimulation may change over time. That is, some studies have reported that the beneficial effects of stimulation lessen in time for patients with CRPS, and PHN (11, 12). In general, I would say that many patients with neuropathic pain who use spinal cord stimulation as a treatment report that the therapy has improved their quality of life and lessened their disability for the period of time the device was used.

Intrathecal pain pumps with an opioid (morphine, for instance) may be helpful in controlling intractable pain associated with CRPS, though the literature fails to support this treatment with high quality studies. However, van Hilten et al (2000) showed that patients with contractions (arm or leg in fixed or rigid position) associated with CRPS demonstrated complete or partial relief of these symptoms after an agent called baclofen was infused through a catheter and an implanted pump (13). Some patients reported reduced pain and fewer sensory disturbances as well.

In general, pain specialists consider implantable pain pumps only in select patients and in those individuals who fail all other therapies.

Neuropathic and chronic pain can be best treated with multimodal therapy. Pharmacological treatments are helpful, and certain interventional/procedural approaches can offer significant relief. Complementary medicine, such as acupuncture and pain psychology can also be helpful. Depression and anxiety often co-exist with chronic pain and neuropathic pain. Behavioral therapies can aid in reducing the impact of pain on a person’s life and should be considered with any treatment strategy.

References:

13. van Hilten et al. NEJM 2000

Fatigue and Transverse Myelitis
Randall T. Schapiro, MD
Director, The Schapiro Center for Multiple Sclerosis at the Minneapolis Clinic of Neurology and Clinical Professor of Neurology, University of Minnesota

Adapted from a presentation given at the 2004 Rare Neuroimmunologic Disorders Symposium

This article is about fatigue in transverse myelitis. I have never really considered transverse myelitis a disease. I have considered TM a symptom of some other condition; in much the same way as seizures end up being called epilepsy, if you are uncertain of the cause. There are numerous causes of transverse myelitis. These include:

- Parainfectious - viral and bacterial
- Postvaccinal
- Autoimmune: Lupus, Sjogren’s, Sarcoïd, Multiple Sclerosis
- Paraneoplastic syndrome
- Vascular

Fatigue can be associated with any and all of the diseases associated with Transverse Myelitis. Not everyone who has transverse myelitis, however, has fatigue associated with it. I don’t know which causes are associated with fatigue and which are not; I am not sure that anyone has that answer. Multiple Sclerosis is the prototype for fatigue in this disease group, so I am going to focus on the relationship between MS and fatigue. I recognize that this case may not fit each and every person with their individual form of transverse myelopathy or myelitis.

Fatigue is the single most common symptom that we see in multiple sclerosis. It is the most disabling symptom that we see in multiple sclerosis. If you have a transverse myelopathy...